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Summary arrangement is its invariant handedness. In humans, for
example, the cardiac apex, spleen, and stomach lie toAbnormal left-right–axis formation results in hetero-
the left of the midline, the right lung has three lobestaxy, a multiple-malformation syndrome often charac-
whereas the left has two, and the large intestine followsterized by severe heart defects, splenic abnormalities,
a right-to-left course in the shape of an inverted U.and gastrointestinal malrotation. Previously we had

Designated ‘‘situs solitus,’’ this normal organ positionstudied a large family in which a gene for heterotaxy,
can be completely reversed (situs inversus) or random-HTX1, was mapped to a 19-cM region in Xq24-q27.1.
ized (situs ambiguus). Situs inversus historically has beenFurther analysis of this family has revealed two recombi-
considered a medical curiosity and by itself is withoutnations that place HTX1 between DXS300 and
functional significance. Situs ambiguus describes anDXS1062, an interval spanning Ç1.3 Mb in Xq26.2. In
overall anatomic arrangement of left-right asymmetryorder to provide independent confirmation of HTX1
that is neither situs inversus nor situs solitus. The mostlocalization, a PCR-based search for submicroscopic de-
common anatomic defects associated with situs ambi-letions in this region was performed in unrelated males
guus include severe heart malformations, splenic abnor-with sporadic or familial heterotaxy. A cluster of se-
malities, and malposition of the abdominal visceraquence-tagged sites failed to amplify in an individual
(Winer-Muram and Tonkin 1989). Mortality is high be-who also had a deceased, affected brother. FISH identi-
cause of the overall complexity of malformations, par-fied the mother as a carrier of the deletion, which arose
ticularly of the heart.as a new mutation from the maternal grandfather. The

Situs inversus and situs ambiguus usually arise spo-deletion interval spans 600–1,100 kb and lies wholly
radically. Familial cases of situs inversus occur most of-within the 1.3-Mb region identified by recombination.
ten as a manifestation of immotile cilia syndrome (ICS),Discovery of this deletion supports localization of
an autosomal recessive disorder characterized by a vari-HTX1 to Xq26.2 and reveals the first molecular-genetic
able combination of chronic upper-respiratory infec-abnormality associated with human left-right–asymme-
tions, bronchiectasis, deafness, and infertility (Afzeliustry defects.
and Mossberg 1994). Familial situs ambiguus has been
reported with autosomal and X-linked transmission

Introduction (Mathias et al. 1987; Burn 1991; Mikkila et al. 1994;
Alonso et al. 1995; Casey et al. 1996) The most com-Left-right–axis formation occurs among all vertebrates
monly reported cases involve multiple affected siblings,during embryogenesis. This developmental process leads
and some of these sibships are the result of consanguine-to asymmetric positioning of unpaired thoracic and ab-
ous matings, implying autosomal recessive inheritancedominal organs. One striking feature of this anatomic
(Burn 1991). Midline malformations accompany situs
ambiguus in several affected individuals in families with
presumed X-linked inheritance (Mathias et al. 1987;Received March 19, 1997; accepted for publication May 23, 1997.
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versus may be at risk of having offspring or other rela- Sequence-Tagged Sites (STSs) and Southern Blot
Analysistives with situs ambiguus and its accompanying morbid-

ity and mortality (Alonso et al. 1995; Casey et al. 1996). STS primer sequences have been deposited in GDB.
In order to begin understanding the underlying patho- PCR was performed under the following conditions:

genesis of human left-right–asymmetry defects, we have 80 ng genomic DNA, 1 1 Perkin-Elmer PCR buffer,
studied families and individuals with possible X-linked 200 mmol each of dNTPs/liter, 1 mmol each of for-
transmission of heterotaxy (either situs inversus or situs ward and reverse primers/liter, 1 U Taq Gold polymer-
ambiguus). Previously we had mapped HTX1, a gene ase (Perkin-Elmer) in 25-ml final volume and amplifi-
associated with familial situs abnormalities, to a 19-cM cation by a touchdown protocol identical to that
region of Xq24-q27.1, on the basis of linkage analysis described above, except that the cycles at the 45�C
in a single family, LR1 (Casey et al. 1993). Here we annealing temperature were done six times. Ten mi-
report additional linkage analysis of this family, which croliters each of the final amplification products were
narrows the HTX1 critical region to a 1.3-Mb interval electrophoresed through 2% agarose in Tris-acetate
in Xq26.2. We subsequently detected a submicroscopic buffer (0.04 mol Tris-acetate/liter, 0.001 mol EDTA/
deletion within that 1.3-Mb interval in an affected male liter) at 300 V/m (3 V/cm), stained with ethidium bro-
from an unrelated family, LR2. In addition to confirm- mide, and photographed.
ing and further refining the HTX1 locus, identification Southern blot analysis was performed with 5 mg
of this deletion reveals the first molecular-genetic abnor- genomic DNA, as described elsewhere (Maniatis et al.
mality associated with human left-right–asymmetry de- 1989), with transfer to Hybond-N/ (Amersham). The
fects. probe, radiolabeled with [a-32P]dCTP, was the 1.4-kb

EcoRI-EcoRI fragment from cDNA clone HFBCB92
obtained from the American Type Culture Collection.Subjects and Methods
Hybridization was performed overnight at 65�C and

Patients with Left-Right–Axis Malformations was washed to a final stringency of 0.1 1 SSC at 60�C
Clinical information and material for analysis were for 10 min.

provided by geneticists, cardiologists, and pathologists
Cosmid-Library Screeningfrom institutions throughout North America and Eu-

rope. Informed consent was obtained from patients par- The X chromosome – specific cosmid library
ticipating in this study, which was approved by the Insti- LLOXNC01 was screened as described elsewhere (Wa-
tutional Review Board at Baylor College of Medicine. penaar et al. 1994), by use of the HFBCB92-derived
DNA was extracted from whole blood or cell lines probe. Two cosmids, U23b3 and U23g3, were hybrid-
(lymphoblast or fibroblast) through the use of the Pure- ized to Southern blots of YACs from the HTX1 critical
gene DNA Isolation Kit (Gentra Systems), according to region, in order to confirm cosmid localization to the
the manufacturer’s protocol. region.

Genotyping FISH
Primer sequences for polymorphic loci have been de- FISH was performed as described elsewhere (Shaffer

posited in the Genome Database (GDB). One hundred et al. 1994). Cosmid U23b3 was labeled with digoxi-
picomoles of the forward primer was end-labeled with genin and was detected with anti-digoxigenin conju-
[g-32P]dATP in a reaction catalyzed by 1 U T4 poly- gated to rhodamine (which fluoresces red). A probe for
nucleotide kinase in 1 1 T4 PNK buffer (10 mM Tris- the alpha-satellite to the X chromosome was obtained
HCl pH7.6, 10 mM MgCl2, 5 mM DTT) at 37�C for 1 prelabeled with biotin (Oncor) and was detected with
h. PCR was performed under the following conditions: avidin conjugated to FITC (which fluoresces green). Im-
40 ng genomic DNA, 1 1 Perkin-Elmer PCR buffer, ages were captured by a Zeiss Axiophot fluorescent mi-
200 mmol each of dNTPs/liter, 0.4 mmol each of for- croscope equipped with a triple-bandpass filter and a
ward and reverse primers/liter, and 0.75 U Taq Gold PSI Powergene 810 probe system. Images were printed
polymerase (Perkin-Elmer) in a 15-ml final volume and by a Tektronix color/monochrome Phasar II SDX
amplification by a touchdown protocol consisting of printer.
94�C for 1 min for one cycle; 94�C for 1 min, T for 1
min, and 72�C for 1 min, for 30 cycles, where T is 60�C– Results
46�C and decreases 0.5�C every cycle; 92�C for 1 min,

Refined Linkage Analysis in Family LR1: Narrowing of45�C for 1 min, and 72�C for 1 min, for 3 cycles; and
the HTX1 Critical Region72�C for 7 min, for one cycle. Amplified sequences were

detected on 6% polyacrylamide–7 M urea gels run at Family LR1 has been studied previously, as de-
scribed elsewhere (Casey et al. 1993). The original80 W for 3 h and exposed for 2 h–2 d.
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Figure 1 Genotypes for selected members of family LR1. Pedigree positions are according to the previous description of this family
(Casey et al. 1993). Obligate carriers are represented by circles containing a black dot. Chromosomal segments between DXS1001 and DXS984
are represented by rectangles. Marker order is according to the most recently published consensus map of the X chromosome (Nelson et al.
1995). The blackened chromosome section in II-4 shows the haplotype shared in common by all of the obligate carriers and affected males.

family members, as well as eight additional members, and IV-1, respectively. Neither of these males has any
evidence of internal malformations, and both are alivewere further analyzed with 10 microsatellite markers

localized to Xq24.1-q27 (Nelson et al. 1995). The and well at ages 35 and 5 years, respectively.
Inheritance of recombinant chromosomes by these un-family members newly tested were all affected or unaf-

fected males (and their mothers, if the latter had not affected males suggests that HTX1 is located in Xq26.2,
between DXS300 and DXS1062. This region has beenpreviously been studied) whose lineage could be

traced to an obligate-carrier female. The results of a cloned into YACs (Pilia et al. 1996). These YACs were
screened by PCR with polymorphic microsatellites pre-portion of that linkage analysis are illustrated in figure

1. Two daughters of obligate carriers inherited disease viously localized genetically between DXS1001 and
DXS984 (Gyapay et al. 1994) Two of these markers—chromosomes recombinant between DXS1001 and

DXS984. Individual II-5 has inherited the disease hap- DXS1041 and DXS8050—mapped to the region be-
tween DXS300 and DXS1062 (data not shown). Subse-lotype from DXS1062 to DXS984, whereas individual

III-13 inherited the disease haplotype between quent analysis of family LR1 by use of these microsatel-
lites showed no recombination between them and theDXS1001 and DXS300. Both individuals have passed

the recombinant chromosomes to their sons, III-19 disease phenotype (fig. 1).
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Table 1

Summary of Malformations Identified in Affected Males from Family LR2

MALFORMATION(S)

PATIENT Heart Abdomen Other

MB Atrio-ventricular canal, left superior Asplenia, transverse liver, midline Imperforate
vena cava stomach, intestinal malrotation anus

KB Atrio-ventricular canal, transposition Asplenia, transverse liver, midline
of great arteries, pulmonary-valve stomach, intestinal malrotation
atresia

STS-Content Analysis: Submicroscopic Deletion in Linkage analysis of family LR2 was performed by use
of polymorphic markers DXS1041 and DXS8050. ForFamily LR2
each marker, RB has failed to inherit the obligate pater-A search for submicroscopic deletions in 37 males
nal allele (fig. 3B). The results suggest that she has inher-with sporadic or familial laterality defects was per-
ited a new mutation from her father or, alternatively,formed by use of STSs within the HTX1 critical region.
that he carries the deletion chromosome through go-Among the individuals studied was MB, a male from
nadal mosaicism.family LR2 who was situs ambiguus and who also had

an affected brother, KB, from whom no material was
available for analysis. Complex heart malformations, Discussion
asplenia, midline liver and stomach, and intestinal mal-
rotation were identified at autopsy in both individuals Previously we had mapped a gene associated with

familial situs abnormalities, HTX1, to a region spanning(see table 1). MB also had an imperforate anus. On the
basis of symptoms, physical examination, and chest x- 19 cM in Xq24-q27.1. We now hypothesize that HTX1

can be excluded from both the interval betweenray, neither parent shows any evidence of internal anom-
alies. The mother, RB, was also shown to be anatomi- DXS1001 and DXS300 and the interval between

DXS1062 and DXS984, on the basis of passage of thesecally normal by echocardiography and abdominal ultra-
sound. The karyotypes of MB and his mother, RB, were chromosomal segments from obligate-carrier females to

unaffected males. This exclusion requires complete pen-46,XY and 46,XX, respectively.
No amplification products were detected in MB, with etrance in family LR1, which we presume on the basis

of the presence of a severe, life-threatening phenotypemarkers DXS1041, sWXD456, DXS1119E, DXS8050,
and EF84, all of which map between DXS300 and in all affected males during the first few days of life. The

genetic evidence therefore favors localization ofDXS1062 (fig. 2A) (Pilia et al. 1996). The deletion sug-
gested by this failure of amplification was confirmed by HTX1—or of regions essential for its normal func-

tion—to a 1.3-Mb region between DXS300 andSouthern blot hybridization using probe HFBCB92, the
cDNA clone from which DXS1119E was derived (fig. DXS1062. Detection of a 600–1,100-kb deletion within

this interval in an unrelated family with an essentially2B) (Adams et al. 1992). The PCR results place the
centromeric and telomeric breakpoints of the deletion identical phenotype supports this conclusion.

This submicroscopic deletion is the first molecular-between DXS1184 and DXS1041 and between EF84
and DXS1062, respectively. The size range of the deleted genetic defect to be identified that is associated defini-

tively with abnormal human left-right asymmetry. Puta-interval is 600–1,100 kb, according to a published phys-
ical map of the region (Pilia et al. 1996). tive mutations in a gap-junction gene, connexin43

(cx43), have been reported in association with situs am-In order to obtain a probe suitable for carrier detec-
tion by FISH, a subset of the Lawrence Livermore X biguus (Britz-Cunningham et al. 1995). Subsequent as-

sociations of cx43 mutations with situs ambiguus havechromosome–specific cosmid library was screened with
HFBCB92. A single cosmid was identified, and its local- not been reported, and at least two other groups have

failed to detect cx43 mutations in large cohorts of situsization between DXS300 and DXS1062 was confirmed
by Southern blot hybridization to the YAC contig (data ambiguus patients (Gebbia et al. 1996; Penmann-Splitt

et al. 1997) With regard to chromosomal anomalies,not shown). This cosmid, U23b3, was used as a FISH
probe against metaphase spreads prepared from individ- balanced and unbalanced translocations among a vari-

ety of autosomes have been described in sporadic casesual RB. As shown in figure 3A, the probe hybridizes to
only one of the X chromosomes of RB, indicating that of situs ambiguus with or without additional malforma-

tions (Freeman et al. 1996). Some of these rearrange-she carries the deletion.



399Ferrero et al.: A Gene for Laterality Defects in Xq26.2

Figure 2 STS content and Southern blot analysis of patient MB from family LR2. A, Relative order of STSs between DXS300 and
DXS1062, indicated along the unbroken black line. The relative position of the probe used in panel B is shown above this unbroken black
line, as is the extent of the deletion, inferred from the STS-content results. B, Southern blot hybridization of affected male MB, his mother RB,
and two controls, by use of probe HBFCB92.

Figure 3 Transmission of the deletion chromosome in family LR2. A, FISH using cosmid U23b3 as a probe against metaphase spreads
of lymphoblasts from individual RB. B, Polymorphic-repeat analysis showing failure of RB to inherit paternal alleles for the indicated markers.
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